Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 824
Filtrar
1.
J Fish Dis ; 47(6): e13937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38440909

RESUMO

The guppy, Poecilia reticulata, is one of the most common cultured ornamental fish species, and a popular pet fish highly desired by hobbyists worldwide due to its availability of many brilliantly coloured fish of many varieties. The susceptibility of guppies to diseases presents a remarkable concern for both breeders and hobbyists. In this study, we report the emergence of disease in fancy guppies caused by a previously uncharacterized virus in the USA. This virus was isolated from moribund guppies in two separate outbreaks in California and Alabama, from December 2021 to June 2023. The infected guppies presented with acute morbidity and mortality shortly after shipping, displaying nonspecific clinical signs and gross changes including lethargy, anorexia, swimming at the water surface, gill pallor, mild to moderate coelomic distension and occasional skin lesions including protruding scales, skin ulcers and hyperaemia. Histological changes in affected fish were mild and nonspecific; however, liver and testes from moribund fish were positive for Tilapia lake virus (TiLV), the single described member in the family Amnoonviridae, using immunohistochemistry and in situ hybridization, although the latter was weak. A virus was successfully recovered following tissue inoculation on epithelioma papulosum cyprini and snakehead fish cell lines. Whole genome sequencing and phylogenetic analyses revealed nucleotide and amino acid homologies from 78.3%-91.2%, and 78.2%-97.7%, respectively, when comparing the guppy virus genomes to TiLV isolates. Based on the criteria outlined herein, we propose the classification of this new virus, fancy tailed guppy virus (FTGV), as a member of the family Amnoonviridae, with the name Tilapinevirus poikilos (from the Greek 'poikilos', meaning of many colours; various sorts, akin to 'poecilia').


Assuntos
Doenças dos Peixes , Filogenia , Poecilia , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/patologia , Doenças dos Peixes/diagnóstico , California , Alabama
2.
Ecotoxicol Environ Saf ; 273: 116138, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394759

RESUMO

The mechanism by which Y. ruckeri infection induces enteritis in Chinese sturgeon remains unclear, and the efficacy of drug prevention and control measures is not only poor but also plagued with numerous issues. We conducted transcriptomic and 16 S rRNA sequencing analyses to examine the differences in the intestinal tract of hybrid sturgeon before and after Y. ruckeri infection and florfenicol intervention. Our findings revealed that Y. ruckeri induced the expression of multiple inflammatory factors, including il1ß, il6, and various chemokines, as well as casp3, casp8, and multiple tumor necrosis factor family members, resulting in pathological injury to the body. Additionally, at the phylum level, the relative abundance of Firmicutes and Bacteroidota increased, while the abundance of Plesiomonas and Cetobacterium decreased at the genus level, altering the composition of the intestinal flora. Following florfenicol intervention, the expression of multiple apoptosis and inflammation-related genes was down-regulated, promoting tissue repair. However, the flora became further dysregulated, increasing the risk of infection. In conclusion, our analysis of the transcriptome and intestinal microbial composition demonstrated that Y. ruckeri induces intestinal pathological damage by triggering apoptosis and altering the composition of the intestinal microbiota. Florfenicol intervention can repair pathological damage, but it also exacerbates flora imbalance, leading to a higher risk of infection. These findings help elucidate the molecular mechanism of Y. ruckeri-induced enteritis in sturgeon and evaluate the therapeutic effect of drugs on intestinal inflammation in sturgeon.


Assuntos
Enterite , Doenças dos Peixes , Oncorhynchus mykiss , Tianfenicol/análogos & derivados , Yersiniose , Animais , Yersinia ruckeri/genética , Yersiniose/microbiologia , Doenças dos Peixes/patologia , Peixes , Inflamação
3.
J Virol ; 98(3): e0146923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38345385

RESUMO

Grass carp reovirus (GCRV), particularly the highly prevalent type II GCRV (GCRV-II), causes huge losses in the aquaculture industry. However, little is known about the mechanisms by which GCRV-II invades grass carp and further disseminates among tissues. In the present study, monocytes/macrophages (Mo/Mφs) were isolated from the peripheral blood of grass carp and infected with GCRV-II. The results of indirect immunofluorescent microscopy, transmission electron microscopy, real-time quantitative RT-PCR (qRT-PCR), western blot (WB), and flow cytometry analysis collectively demonstrated that GCRV-II invaded Mo/Mφs and replicated in them. Additionally, we observed that GCRV-II induced different types (M1 and M2) of polarization of Mo/Mφs in multiple tissues, especially in the brain, head kidney, and intestine. To assess the impact of different types of polarization on GCRV-II replication, we recombinantly expressed and purified the intact cytokines CiIFN-γ2, CiIL-4/13A, and CiIL-4/13B and successfully induced M1 and M2 type polarization of macrophages using these cytokines through in vitro experiments. qRT-PCR, WB, and flow cytometry analyses showed that M2 macrophages had higher susceptibility to GCRV-II infection than other types of Mo/Mφs. In addition, we found GCRV-II induced apoptosis of Mo/Mφs to facilitate virus replication and dissemination and also detected the presence of GCRV-II virus in plasma. Collectively, our findings indicated that GCRV-II could invade immune cells Mo/Mφs and induce apoptosis and polarization of Mo/Mφs for efficient infection and dissemination, emphasizing the crucial role of Mo/Mφs as a vector for GCRV-II infection.IMPORTANCEType II grass carp reovirus (GCRV) is a prevalent viral strain and causes huge losses in aquaculture. However, the related dissemination pathway and mechanism remain largely unclear. Here, our study focused on phagocytic immune cells, monocytes/macrophages (Mo/Mφs) in blood and tissues, and explored whether GCRV-II can invade Mo/Mφs and replicate and disseminate via Mo/Mφs with their differentiated type M1 and M2 macrophages. Our findings demonstrated that GCRV-II infected Mo/Mφs and replicated in them. Furthermore, GCRV-II infection induces an increased number of M1 and M2 macrophages in grass carp tissues and a higher viral load in M2 macrophages. Furthermore, GCRV-II induced Mo/Mφs apoptosis to release viruses, eventually infecting more cells. Our study identified Mo/Mφs as crucial components in the pathway of GCRV-II dissemination and provides a solid foundation for the development of treatment strategies for GCRV-II infection.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Animais , Apoptose , Citocinas , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Monócitos/metabolismo , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/patologia , Infecções por Reoviridae/veterinária , Replicação Viral
4.
J Fish Dis ; 46(12): 1377-1389, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37675872

RESUMO

Selective breeding plays a vital role in the production of farmed Atlantic salmon and has shown success in many aspects. Still, challenges related to fish health and welfare continue to result in significant economic losses. One such challenge is red and melanized focal changes (RFC/MFC), which result from acute and chronic inflammation, respectively, in the skeletal muscle. Importantly, RFC/MFC has not been observed in wild Atlantic salmon, suggesting that both external and genetic factors may contribute to the development of inflammation. To investigate the underlying cause of RFC/MFC, we conducted a study involving 1854 Atlantic salmon of farmed, wild and hybrid origin. All fish were reared under identical conditions to minimize the influence of external factors. Throughout the production cycle, the fish was monitored for growth parameters and examined for RFC/MFC using macroscopic and histological analysis. We found no association between the experimental groups and the presence of RFC/MFC. Histological investigations revealed melano-macrophages in the soft tissue in freshwater smolt, although no macroscopic discoloration was observed. MFC showed granulomas in various stages, suggesting a complex progression of the condition. In summary, we conclude that RFC/MFC is primarily caused by external factors found in the rearing facilities of farmed Atlantic salmon.


Assuntos
Doenças dos Peixes , Salmo salar , Animais , Doenças dos Peixes/patologia , Inflamação/patologia , Músculo Esquelético/patologia
5.
BMC Vet Res ; 19(1): 67, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37101161

RESUMO

BACKGROUND: Lymphatic neoplasia may occur in various types, such as lymphoma, lymphosarcoma, lympholeukemia, and plasmacytoid leukemia. Lymphoma, defined as a malignant tumour of lymphoid tissue, has been found in a number of fish families including Esocidae and Salmonidae. However, the occurrence of lymphoma is rare in those belonging to the Cyprinidae. A final diagnosis of ocular and testicular T-cell lymphoma in the present study was based on the clinical signs, morphology, and texture of the tumour masses in the macroscopic and microscopic examinations. In addition, histopathological and immunohistochemical findings corresponded to T-cell lymphoma characteristics. CASE PRESENTATION: A 2-year-old hermaphrodite koi carp (Cyprinus carpio Linnaeus 1758) with a large ocular mass and severe exophthalmia in the right eye was referred to the Ornamental Fish Clinic in October 2020. Under anesthesia, enucleation was performed. 57 days after enucleation of the right eye, exophthalmia in the left eye was discovered. 221 days after surgery, the fish was discovered to be dead. At necropsy, a large soft tissue mass attached to the left testis was discovered. There were also small whitish nodules on the surface of the liver. Histopathology revealed a hypercellular ocular mass with scant connective tissue. The sections also revealed multifocal hemorrhages, round to ovoid neoplastic cells, mild-to-moderate anisokaryosis and anisocytosis, and mitotic figures. Basophilic neoplastic cells were found in blood vessels within the testicular mass, raising the possibility of systemic spread. The liver showed microscopic metastasis with morphologic similarities to the ocular and testicular tumors. The neoplastic cells infiltrating the left and right eyes as well as the testicular mass were immunohistochemically positive for CD3 but negative for CD20. The masses were diagnosed as T-cell lymphoma based on histopathological and immunohistochemical findings. CONCLUSIONS: This case report provides the first evidence of clinical, histopathological, morphological, and immunohistochemical findings of an ocular and testicular T-cell lymphoma in a hermaphrodite koi carp (Cyprinus carpio) in Iran.


Assuntos
Neoplasias Oculares , Doenças dos Peixes , Linfoma de Células T Periférico , Neoplasias Testiculares , Animais , Masculino , Carpas , Doenças dos Peixes/patologia , Irã (Geográfico) , Linfoma de Células T Periférico/patologia , Linfoma de Células T Periférico/veterinária , Neoplasias Testiculares/patologia , Neoplasias Testiculares/veterinária , Neoplasias Oculares/patologia , Neoplasias Oculares/veterinária , Imuno-Histoquímica/veterinária
6.
J Comp Pathol ; 200: 1-11, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36587440

RESUMO

This study catalogued ocular pathology in fish histopathology submissions to a specialist diagnostic service and investigated associations with species and systemic disease, with a focus on species of conservation interest. Cross-tabulations and Fisher's exact tests were used to identify associations among the variables and results are reported as prevalence ratios (PRs) with 95% confidence intervals (CI). Of 12,488 reports reviewed, ocular histology examination was available for 4,572 submissions, in which histopathological ocular lesions were identified in 18% (813/4572). Most diagnoses (701/813; 87%) were in marine fish. Inflammatory conditions were most common (608/813; 75%), with identification of a bacterial aetiology in 42% (255/608) and a parasitic aetiology in 30% (183/608). Most bacterial infections were due to mycobacteriosis (153/255; 60%) and most parasitic infections were due to scuticociliatosis (114/184; 62%). The Syngnathidae, Centriscidae and Cichlidae families were each more likely than all other families combined to be diagnosed with ocular manifestations of mycobacteriosis (PRs = 2.6, 4.4 and 2.9, respectively, P <0.0001 for each). The Syngnathidae were also more likely to be diagnosed with ocular scuticociliatosis (PR = 1.9, P <0.0001). Fifty-four percent (39/72) of ocular mycobacteriosis and 38% (9/24) of gas bubble disease cases affected threatened or near threatened Syngnathidae species. The Apogonidae were more likely than any other family to have ocular iridovirus (PR = 10.3, 95% CI = 5.5-19.4, P <0.0001) and neoplasia (PR = 8.2, 95% CI = 4.2-16.3, P <0.0001). The endangered Banggai cardinalfish (Pterapogon kauderni) accounted for 13/15 ocular iridovirus and 16/18 mycobacteriosis cases in this family. All cases of neoplasia in the Apogonidae occurred in pajama cardinalfish (Sphaeramia nematoptera). These results should inform clinical diagnosis of ocular disease in aquarium fish and influence training for aquarists, highlighting ocular pathology as a potential early warning of systemic disease. The findings also have direct/indirect consequences for the welfare and conservation of some of these popular flagship fish species.


Assuntos
Infecções Bacterianas , Doenças dos Peixes , Animais , Infecções Bacterianas/veterinária , Doenças dos Peixes/patologia
7.
J Fish Dis ; 45(9): 1301-1321, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35707921

RESUMO

Gill disease is an important cause of economic losses, fish mortality and reduced animal welfare in salmonid farming. We performed a prospective cohort study, following groups of Atlantic salmon in Western Norway with repeated sampling and data collection from the hatchery phase and throughout the 1st year at sea. The objective was to determine if variation in pathogen prevalence and load, and zoo- and phytoplankton levels had an impact on gill health. Further to describe the temporal development of pathogen prevalence and load, and gill pathology, and how these relate to each other. Neoparamoeba perurans appeared to be the most important cause of gill pathology. No consistent covariation and no or weak associations between the extent of gill pathology and prevalence and load of SGPV, Ca. B. cysticola and D. lepeophtherii were observed. At sea, D. lepeophtherii and Ca. B. cysticola persistently infected all fish groups. Fish groups negative for SGPV at sea transfer were infected at sea and fish groups tested negative before again testing positive. This is suggestive of horizontal transmission of infection at sea and may indicate that previous SGPV infection does not protect against reinfection. Coinfections with three or more putative gill pathogens were found in all fish groups and appear to be the norm in sea-farmed Atlantic salmon in Western Norway.


Assuntos
Amebíase , Doenças dos Peixes , Salmo salar , Amebíase/epidemiologia , Amebíase/patologia , Amebíase/veterinária , Animais , Estudos de Coortes , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/patologia , Brânquias/patologia , Humanos , Estudos Prospectivos
8.
Rev Bras Parasitol Vet ; 31(2): e001522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613150

RESUMO

The genus Dermocystidium infects a wide range of animals. The host infection often occurs through the ingestion of endospores. The diagnosis depends on wet mounts and histopathological analysis of the affected tissue. The aim of this study was to investigate the incidence of Dermocystidium sp. infection on the skin of farmed striped catfish (Pangasianodon hypophthalmus) from a fish farm located in Fortaleza, Ceará state, northeastern Brazil. From these observations, we determined that 100% of the analyzed animals were infected with Dermocystidium sp. The wet mount and histopathology of the fish lesions revealed spore-filled cysts between the dermis and epidermis, encapsulated by connective tissue. Owing to a lack of research on the parasite and its prevalence among different fish species in Brazil and the rest of the world, additional studies are required to understand their endemicity in fish farms of Brazil, and consequently develop better disease prevention methods and increase the overall productivity.


Assuntos
Peixes-Gato , Doenças dos Peixes , Animais , Brasil/epidemiologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/patologia
9.
Fish Shellfish Immunol ; 124: 28-38, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35367374

RESUMO

Little is known about host responses of farmed Chinook salmon with skin lesions, despite the lesions being associated with increased water temperatures and elevated mortality rates. To address this shortfall, a transcriptomic approach was used to characterise the molecular landscape of spot lesions, the most commonly reported lesion type in New Zealand Chinook salmon, versus healthy appearing skin in fish with and without spot lesions. Many biological (gene ontology) pathways were enriched in lesion adjacent tissue, relative to control skin tissue, including proteolysis, fin regeneration, calcium ion binding, mitochondrial transport, actin cytoskeleton organisation, epithelium development, and tissue development. In terms of specific transcripts of interest, pro-inflammatory cytokines (interleukin 1ß and tumour necrosis factor), annexin A1, mucin 2, and calreticulin were upregulated, while cathepsin H, mucin 5AC, and perforin 1 were downregulated in lesion tissue. In some instances, changes in gene expression were consistent between lesion and healthy appearing skin from the same fish relative to lesion free fish, suggesting that host responses weren't limited to the site of the lesion. Goblet cell density in skin histological sections was not different between skin sample types. Collectively, these results provide insights into the physiological changes associated with common spot lesions in farmed Chinook salmon.


Assuntos
Doenças dos Peixes , Dermatopatias , Animais , Doenças dos Peixes/patologia , Nova Zelândia , Salmão/fisiologia , Transcriptoma
10.
Rev Bras Parasitol Vet ; 31(2): e000922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476008

RESUMO

Our aim was to assess endoparasite diversity and liver alterations in Hoplerythrinus unitaeniatus (jeju) and Cichlasoma bimaculatum (acará preto) in a quilombola area in Maranhão, Brazil. For this, 21 H. unitaeniatus and 21 C. bimaculatum were caught in a natural environment and transported to a laboratory. After these had been euthanized, endoparasites were collected and identified. Liver alterations were evaluated histological analysis based on the severity of each lesion: stage I, organ functioning not compromised; stage II, more severe lesions that impair normal functioning of the organs; and stage III, very severe and irreversible lesions. Among the fish evaluated, 71.43% H. unitaeniatus and 61.90% C. bimaculatum were parasitized. Contracaecum sp. was found in both species; while acanthocephalans, only in H. unitaeniatus. The alterations were vacuolization, nucleus in the cell periphery, deformation of the cell outline, melanomacrophage center, hyperemia, cytoplasmic degeneration and nuclear vacuolization. Through calculating a histological alteration index, it was found that 26.19% of the specimens presented lesions in stage I; 38.09% lesions in stage II and 9.52% lesions in stage III. It was concluded that there is high prevalence of Contracaecum sp. and that the liver lesions may be adaptive responses by the fish to endoparasitic infection.


Assuntos
Acantocéfalos , Caraciformes/parasitologia , Ciclídeos/parasitologia , Doenças dos Peixes/parasitologia , Helmintíase Animal/patologia , Fígado/patologia , Animais , Brasil , Doenças dos Peixes/patologia , Helmintíase Animal/parasitologia , Fígado/parasitologia
11.
Front Immunol ; 12: 781680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887869

RESUMO

IAPs (inhibitors of apoptosis) are endogenous caspase inhibitors with multiple biological activities. In the present study, we show functional characteristics of antiapoptotic protein BIRC2 (cIAP1) in response to Edwardsiella piscicida infection. Overexpression of BIRC2 in zebrafish larvae promoted the proliferation of E. piscicida, leading to a decreased larvae survival. The expression levels of caspases including casp3, casp8, and casp9 were significantly inhibited by BIRC2 overexpression in the case of E. piscicida infection. Treatment of zebrafish larvae microinjected with BIRC2 with the caspase activator PAC-1 completely blocked the negative regulation of BIRC2 on the E. piscicida infection, with the reduced inhibition on the casp3 and without inhibition on casp8 and casp9. In contrast to the regulation of BIRC2 on the caspases, BIRC2 overexpression significantly induced the expression of p53, especially at 24 hpi. In addition to the cytoplasmic p53 expression, BIRC2 overexpression also induced the expression of the nuclear p53 protein. Further analysis demonstrated that BIRC2 could interact and colocalize with p53 in the cytoplasm. The numbers of E. piscicida in larvae overexpressed with BIRC2 and treated with pifithrin-µ (an inhibitor of mitochondrial p53) or pifithrin-α (an inhibitor of p53 transactivation) were lower than those of larvae without pifithrin-µ or pifithrin-α treatment. Critically, the p53 inactivators pifithrin-µ and pifithrin-α had no significant effect on larval survival, but completely rescued larval survival for zebrafish microinjected with BIRC2 in the case of E. piscicida infection. Collectively, the present study suggest that piscine BIRC2 is a negative regulator for antibacterial immune response in response to the E. piscicida infection via inhibiting caspases, and accumulating p53 in a p53 transcription-dependent and -independent manner.


Assuntos
Caspases/metabolismo , Edwardsiella , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/etiologia , Doenças dos Peixes/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Biomarcadores , Suscetibilidade a Doenças , Doenças dos Peixes/patologia , Expressão Gênica , Proteínas Inibidoras de Apoptose/metabolismo , Espaço Intracelular , Filogenia , Ligação Proteica , Transporte Proteico , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Análise de Sequência de DNA , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra
12.
Antiviral Res ; 195: 105192, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34687821

RESUMO

Due to the lack of relevant therapies for infectious haematopoietic necrosis virus (IHNV) infection, the viral outbreak invariably causes serious economic losses in salmonid species. In this study, we evaluated the anti-IHNV effects of 7-(6-benzimidazole) coumarin (C10) and 4-phenyl-2-thioxo-1,2,3,4-tetrahydro-5H-chromeno[4,3-d]pyrimidin-5-one (S5) in vitro and in vivo. The results revealed that C10 at 12.5 mg/L and S5 at 25 mg/L significantly inhibited IHNV replication in epithelioma papulosum cyprini (EPC) cells with a maximum inhibitory rate >90%, showing that IHNV-induced cytopathic effect (CPE) was alleviated by C10 and S5. There are two complementary effects on antiviral mechanism: 1. C10 completely inhibited IHNV infectivity when the virus was preincubated with C10 at 12.5 mg/L, determining that C10 may have a negative impact on IHNV binding to the cell; 2. C10 also up-regulated the gene expression of extracellular proto type galectin-1 (Gal1-L2) and a chimera galectin-3 (Gal3-L1) of EPC cells to inhibit IHNV adhesion. For the in vivo study, injection and immersion of the coumarins enhanced the survival rate of rainbow trout (Oncorhynchus mykiss) juveniles by 25% (at least) at 12 dpi. IHNV loads in the kidney and spleen were also obviously decreased at 96 h, and thus we considered that they had a delaying effect on IHNV replication in vivo. Meanwhile, C10 with a high stability in aquacultural water in immersion suppressed IHNV horizontal transmission by decreasing the viral loads in recipient fish. Overall, our data suggest that there is a positive effect of C10 and S5 against IHNV infection in aquaculture, and C10 had the potential to be a broad-spectrum antiviral against fish rhabdoviruses.


Assuntos
Antivirais/farmacologia , Cumarínicos/farmacologia , Vírus da Necrose Hematopoética Infecciosa/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Aquicultura , Linhagem Celular , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/mortalidade , Doenças dos Peixes/patologia , Oncorhynchus mykiss/virologia , Infecções por Rhabdoviridae/tratamento farmacológico , Infecções por Rhabdoviridae/mortalidade , Infecções por Rhabdoviridae/patologia , Taxa de Sobrevida , Carga Viral/efeitos dos fármacos , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Front Immunol ; 12: 760882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707620

RESUMO

In mammals, the relationship between the immune system and behavior is widely studied. In fish, however, the knowledge concerning the brain immune response and behavioral changes during brain viral infection is very limited. To further investigate this subject, we used the model of tilapia lake virus (TiLV) infection of zebrafish (Danio rerio), which was previously developed in our laboratory. We demonstrated that TiLV persists in the brain of adult zebrafish for at least 90 days, even when the virus is not detectable in other peripheral organs. The virions were found in the whole brain. During TiLV infection, zebrafish displayed a clear sickness behavior: decreased locomotor activity, reduced food intake, and primarily localizes near the bottom zone of aquaria. Moreover, during swimming, individual fish exhibited also unusual spiral movement patterns. Gene expression study revealed that TiLV induces in the brain of adult fish strong antiviral and inflammatory response and upregulates expression of genes encoding microglia/macrophage markers. Finally, using zebrafish larvae, we showed that TiLV infection induces histopathological abnormalities in the brain and causes activation of the microglia which is manifested by changes in cell shape from a resting ramified state in mock-infected to a highly ameboid active state in TiLV-infected larvae. This is the first study presenting a comprehensive analysis of the brain immune response associated with microglia activation and subsequent sickness behavior during systemic viral infection in zebrafish.


Assuntos
Doenças dos Peixes , Microglia/imunologia , Doenças Neuroinflamatórias , Infecções por Vírus de RNA , Animais , Comportamento Animal , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/virologia , Ingestão de Alimentos , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Expressão Gênica , Comportamento de Doença , Locomoção , Macrófagos/imunologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/veterinária , Doenças Neuroinflamatórias/virologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/patologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , Carga Viral , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
14.
Viruses ; 13(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34578342

RESUMO

Cyprinid herpesvirus 2 (CyHV-2), a member of the Alloherpesviridae family belonging to the genus Cyprinivirus, is a fatal contagious aquatic pathogen that affects goldfish (Carassius auratus) and crucian carp (Carassius carassius). Although crucian carp and goldfish belong to the genus Carassius, it is unclear whether they are susceptible to the same CyHV-2 isolate. In addition, the origin of the crucian carp-derived CyHV-2 virus isolate remains unclear. CyHV-2 SH01 was isolated during herpesviral hematopoietic necrosis disease (HVHN) outbreaks in crucian carp at a local fish farm near Shanghai. CyHV-2 SH01 was confirmed by PCR and Western blot analysis of kidney, spleen, muscle, and blood tissue from the diseased crucian carp. Moreover, histopathological and ultra-pathological analyses revealed pathological changes characteristic of CyHV-2 SH01 infection in the tissues of the diseased crucian carp. In the present study, goldfish and crucian carp were challenged with CyHV-2 SH01 to elucidate viral virulence. We found that CyHV-2 SH01 could cause rapid and fatal disease progression in goldfish and crucian carp 24 h post-injection at 28 °C. Experimental infection of goldfish by injection indicated that the average virus titer in the kidney of the goldfish was 103.47 to 103.59 copies/mg. In addition, tissues exhibited the most prominent histopathological changes (cellular wrinkling and shrinkage, cytoplasmic vacuolation, fusion of the gill lamellae, and hepatic congestion) in CyHV-2 SH01-infected goldfish and crucian carp. Thus, crucian carp and goldfish showed a high sensitivity, with typical symptoms, to HVHN disease caused by CyHV-2 SH01.


Assuntos
Carpas/virologia , Doenças dos Peixes/virologia , Carpa Dourada/virologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Herpesviridae/isolamento & purificação , Animais , China , Suscetibilidade a Doenças , Doenças dos Peixes/patologia , Herpesviridae/classificação , Herpesviridae/genética , Infecções por Herpesviridae/patologia , Necrose/patologia , Necrose/veterinária , Necrose/virologia , Filogenia
15.
Eur J Med Chem ; 223: 113739, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34375787

RESUMO

Diseases caused by rhabdoviruses have had a huge impact on the productive lives of the entire human population. The main problem is the lack of drugs for the treatment of this family of viruses. Infectious hematopoietic necrosis virus (IHNV), the causative agent of IHN, is a typical rhabdovirus which has caused huge losses to the salmonid industry. Therefore, in this study, IHNV was studied as a model to evaluate the antiviral activity of 35 novel coumarin derivatives. Coumarin A9 was specifically selected for further validation studies upon comparing the half maximum inhibitory concentration (IC50) of four screened candidate derivatives in epithelioma papulosum cyprinid (EPC) cells, as it exhibited an IC50 value of 2.96 µM against IHNV. The data revealed that A9 treatment significantly suppressed the virus-induced cytopathic effect (CPE) in EPC cells. In addition, A9 showed IC50 values of 1.68 and 2.12 µM for two other rhabdoviruses, spring viremia of carp virus and micropterus salmoides rhabdovirus, respectively. Furthermore, our results suggest that A9 exerts antiviral activity, but not by destroying the virus particles and interfering with the adsorption of IHNV. Moreover, we found that A9 had an inhibitory effect on IHNV-induced apoptosis in EPC cells, as reflected by the protection against cell swelling, formation of apoptotic bodies, and loss of cell morphology and nuclear division. There was a 19.05 % reduction in the number of apoptotic cells in the A9 treatment group compared with that in the IHNV group. In addition, enzyme activity assays proved that A9 suppressed the expression of caspase 3, 8 and 9. These results suggested that A9 inhibit viral replication, to some extent, by blocking IHNV-induced apoptosis. In an in vivo study, A9 exhibited an anti-rhabdovirus effect in virus-infected fish by substantially enhancing the survival rate. Consistent with the above results, A9 repressed IHNV gene expression in virus-sensitive tissues (brain, kidney and spleen) in the early stages of virus infection. Importantly, the data showed that horizontal transmission of IHNV was reduced by A9 in a static cohabitation challenge model, especially in fish that underwent bath treatment, suggesting that A9 might be a suitable therapeutic agent for IHNV in aquaculture. Therefore, coumarin derivatives can be developed as antiviral agents against rhabdoviruses.


Assuntos
Antivirais/síntese química , Cumarínicos/química , Rhabdoviridae/efeitos dos fármacos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/mortalidade , Doenças dos Peixes/patologia , Humanos , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/virologia , Infecções por Rhabdoviridae/tratamento farmacológico , Infecções por Rhabdoviridae/mortalidade , Infecções por Rhabdoviridae/patologia , Relação Estrutura-Atividade , Taxa de Sobrevida , Proteínas Virais/genética , Proteínas Virais/metabolismo , Internalização do Vírus/efeitos dos fármacos
16.
Parasitol Res ; 120(9): 3149-3162, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34351490

RESUMO

Parasitic infection may cause massive losses in Clarias gariepinus fries and fingerlings. Therefore, this study aimed to characterize the digenetic trematodes species (two adults' flukes and one metacercariae) infecting African catfish Clarias gariepinus, as well as their histopathological impacts on infected fish. The intestinal flukes were identified as Orientocreadium batrachoides and Masenia bangweulensis based on their morphological and molecular characteristics. Sequencing of their 28S (LSU rRNA) and 18S rRNA (SSU rRNA) genes confirmed that these trematodes belong to the families Orientocreadiidae and Cephalogonimidae, respectively. The metacercariae trematode infecting skin and muscles were only morphologically identified as Cyanodiplostomum sp. The gene expression levels of MHC II increased in naturally infected fish either with O. batrachoides or Cyanodiplostomum sp. alone, compared with uninfected catfish. In addition, lysozyme levels in individual fish serum increased in catfish infected either with O. batrachoides or Cyanodiplostomum sp. alone. Histopathological examination of the skin revealed embedded parasitic cysts that displaced tissue in the dermis. Surrounding tissues were infiltrated with melanomacrophages and displayed dermal edema. Histopathological analysis showed O. batrachoides or M. bangweulensis between the gastric folds of the stomach of infected catfish, causing infiltration of mononuclear inflammatory cells in the lamina propria.


Assuntos
Peixes-Gato , Doenças dos Peixes , Trematódeos , Infecções por Trematódeos , Animais , Peixes-Gato/parasitologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/patologia , Metacercárias , Trematódeos/genética , Infecções por Trematódeos/patologia , Infecções por Trematódeos/veterinária
17.
Viruses ; 13(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207768

RESUMO

Tilapia tilapinevirus, or tilapia lake virus (TiLV), is a highly contagious virus found in tilapia and its hybrid species that has been reported worldwide, including in Asia, the Americas, and Africa. In this study, we experimentally challenged Mozambique tilapia (Oreochromis mossambicus) with a virulent TiLV strain, VETKU-TV01, at both low (1 × 103 TCID50/mL) and high (1 × 105 TCID50/mL) concentration. After the challenge, the Mozambique tilapia showed pale skin with some hemorrhage and erosion, lethargy, abdominal swelling, congestion around the eye, and exophthalmos; there was a cumulative mortality rate at 48.89% and 77.78% in the groups that received the low and high concentration, respectively. Quantitative PCR and in situ hybridization confirmed the presence of TiLV in the internal organs of moribund fish. Notably, severe histopathological changes, including glycogen depletion, syncytial hepatic cells containing multiple nuclei and intracytoplasmic inclusion bodies, and infiltration of melanomacrophage into the spleen, were frequently found in the Mozambique tilapia challenged with high TiLV concentration. Comparatively, the infectivity and pathology of the TiLV infection in Mozambique tilapia and red hybrid tilapia (Oreochromis spp.) were found to be similar. Our results confirmed the susceptibility of Mozambique tilapia, which has recently been determined to be a vulnerable species, to TiLV infection, expanding knowledge that the virus can cause disease in this fish species.


Assuntos
Doenças dos Peixes/epidemiologia , Doenças dos Peixes/virologia , Vírus de RNA , Tilápia/virologia , Animais , Biópsia , Suscetibilidade a Doenças , Doenças dos Peixes/patologia , Hibridização In Situ , Fenótipo
18.
Front Immunol ; 12: 649385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276647

RESUMO

High levels of soybean oil (SO) in fish diets enriched with linoleic acid (LA, 18:2n-6) could induce strong inflammation. However, the molecular mechanism underlying LA-induced inflammation in the liver of large yellow croaker (Larimichthys crocea) has not been elucidated. Based on previous research, autophagy has been considered a new pathway to relieve inflammation. Therefore, the present study was performed to investigate the role of autophagy in regulating LA-induced inflammation in the liver of large yellow croaker in vivo and in vitro. The results of the present study showed that activation of autophagy in liver or hepatocytes could significantly reduce the gene expression of proinflammatory factors, such as tumor necrosis factor α (TNFα) and interleukin 1ß (IL1ß). The results of the present study also showed that inhibition of autophagy could upregulate the gene expression of proinflammatory factors and downregulate the gene expression of anti-inflammatory factors in vivo and in vitro. Furthermore, autophagy could alleviate LA-induced inflammatory cytokine gene expression in vivo and in vitro, while inhibition of autophagy obtained the opposite results. In conclusion, our study shows that autophagy could regulate inflammation and alleviate LA-induced inflammation in the liver of large yellow croaker in vivo and in vitro for the first time, which may offer considerable benefits to the aquaculture industry and human health.


Assuntos
Autofagia , Doenças dos Peixes/imunologia , Hepatite Animal/imunologia , Ácido Linoleico/efeitos adversos , Perciformes/imunologia , Ração Animal/efeitos adversos , Animais , Aquicultura , Células Cultivadas , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/patologia , Hepatite Animal/induzido quimicamente , Hepatite Animal/patologia , Hepatócitos/imunologia , Fígado/imunologia , Fígado/patologia , Cultura Primária de Células , Óleo de Soja/efeitos adversos , Óleo de Soja/química
19.
Front Immunol ; 12: 679704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276667

RESUMO

In mammals, forkhead box O3 (foxo3) plays important roles in liver immune system. The foxo3 can regulate cell cycle, DNA repair, hypoxia, apoptosis and so on. However, as such an important transcription factor, few studies on foxo3 in fish have been reported. The present study characterized the foxo3 in turbot (Scophthalmus maximus L.). Lipopolysaccharide (LPS) incubated in vitro (hepatocytes) and injected in vivo (turbot liver) were used to construct inflammatory models. The foxo3 was interfered and overexpressed to investigate its functions in liver inflammation. The open reading frame (ORF) of foxo3 was 1998 bp (base pair), encoding 665 amino acids. Sequence analysis showed that foxo3 of turbot was highly homologous to other fishes. Tissue distribution analysis revealed that the highest expression of foxo3 was in muscle. Immunofluorescence result showed that foxo3 was expressed in cytoplasm and nucleus. Knockdown of foxo3 significantly increased mRNA levels of tumor necrosis factor-α (tnf-α), interleukin-1ß (il-1ß), interleukin-6 (il-6), myeloid-differentiation factor 88 (myd88), cd83, toll-like receptor 2 (tlr-2) and protein level of c-Jun N-terminal kinase (JNK) in sifoxo3 + LPS (siRNA of foxo3+ LPS) group compared with NC + LPS (negative control + LPS) group in turbot hepatocytes. Overexpressed foxo3 significantly decreased mRNA levels of tnf-α, il-6, nuclear transcription factor-kappa B (nf-κb), cd83, tlr-2 and the protein level of JNK in vitro. In vivo analysis, foxo3 knockdown significantly increased levels of GOT in serum after LPS injection compared with NC+LPS group. Overexpressed foxo3 significantly decreased levels of GPT and GOT in pcDNA3.1-foxo3+LPS group compared with pcDNA3.1+LPS group in vivo. Foxo3 knockdown significantly increased mRNA levels of tnf-α, il-1ß, il-6, nf-κb, myd88 and protein level of JNK in vivo in sifoxo3+LPS group compared with NC+LPS group in turbot liver. Overexpressed foxo3 significantly decreased mRNA levels of il-1ß, il-6, myd88, cd83, jnk and protein level of JNK in pcDNA3.1-foxo3+LPS group compared with pcDNA3.1+LPS group in turbot liver. The results indicated that foxo3 might modulate LPS-activated hepatic inflammation in turbot by decreasing the proinflammatory cytokines, the levels of GOT and GPT as well as activating JNK/caspase-3 and tlr-2/myd88/nf-κb pathways. Taken together, these findings indicated that FoxO3 may play important roles in liver immune responses to LPS in turbot and the research of FoxO3 in liver immunity enriches the studies on immune regulation, and provides theoretical basis and molecular targets for solving liver inflammation and liver injury in fish.


Assuntos
Doenças dos Peixes/etiologia , Doenças dos Peixes/metabolismo , Proteína Forkhead Box O3/metabolismo , Hepatite Animal/etiologia , Hepatite Animal/metabolismo , Hepatócitos/metabolismo , Lipopolissacarídeos/efeitos adversos , Animais , Biomarcadores , Clonagem Molecular , Suscetibilidade a Doenças , Doenças dos Peixes/patologia , Linguados , Proteína Forkhead Box O3/genética , Expressão Gênica , Hepatite Animal/patologia , Hepatócitos/patologia , Testes de Função Hepática , RNA Interferente Pequeno
20.
Artigo em Inglês | MEDLINE | ID: mdl-34217843

RESUMO

Chlorpyrifos (CPF) is an organophosphate insecticide and can cause cell death of animals. In the study, the common carp were exposed to CPF at 0 µg/L (the control group), 1.16 µg/L (the low dose group), 11.6 µg/L (the medium dose group), and 116 µg/L (the high dose group), respectively. The carp were euthanized at the 30th day and gills were collected immediately. The ultrastructural and histopathological observations showed obvious necrosis characteristics and inflammatory injury in the CPF-treated groups. CPF exposure activated the MAPK pathway, in which the mRNA and protein expressions of extracellular signal-regulated (ERK), p38 MAP kinase (p38), and c-Jun N-terminal kinase (JNK) were increased; the mRNAs and proteins of NF-κB and TNF-α were activated; and the mRNAs and proteins of necroptosis related genes were changed (the mRNA and protein expression of RIPK1, RIPK3, MLKL, and FADD were increased and caspase-8 was decreased) with concentration dependency. Taken together, we concluded that CPF exposure activated the MAPK/NF-κB/TNF-α pathway, promoted inflammatory injure and evoked necroptosis in common carp gills. In addition, CPF-induced inflammation and necroptosis was concentration dependency. The toxic effects of CPF on gills provided data for both aquaculture and toxicological studies.


Assuntos
Carpas , Clorpirifos/toxicidade , Doenças dos Peixes/induzido quimicamente , Brânquias/efeitos dos fármacos , Necrose/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Carpas/metabolismo , Ecotoxicologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/patologia , Brânquias/ultraestrutura , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/veterinária , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA